Copied to
clipboard

?

G = C42.287C23order 128 = 27

148th non-split extension by C42 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C42.287C23, (C2×C8)⋊9Q8, C4⋊Q8.30C4, C4.22(C4×Q8), C8.28(C2×Q8), C84Q832C2, C22.7(C4×Q8), C22⋊Q8.19C4, C4.65(C22×Q8), C4⋊C8.233C22, C42.212(C2×C4), (C2×C4).658C24, (C2×C8).424C23, (C4×C8).330C22, C42.C2.15C4, (C4×Q8).57C22, C8⋊C4.159C22, C82M4(2).23C2, C2.19(Q8○M4(2)), C4⋊M4(2).37C2, C22.184(C23×C4), (C22×C8).444C22, C23.143(C22×C4), (C2×C42).771C22, (C22×C4).1520C23, C42⋊C2.304C22, (C2×M4(2)).361C22, C42.6C22.13C2, C23.37C23.22C2, C2.25(C2×C4×Q8), C4⋊C4.117(C2×C4), C4.309(C2×C4○D4), (C2×C4).243(C2×Q8), (C2×C8⋊C4).39C2, C22⋊C4.39(C2×C4), (C2×C4).75(C22×C4), (C2×Q8).118(C2×C4), (C2×C4).696(C4○D4), (C22×C4).345(C2×C4), SmallGroup(128,1693)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C42.287C23
C1C2C4C2×C4C22×C4C22×C8C2×C8⋊C4 — C42.287C23
C1C22 — C42.287C23
C1C2×C4 — C42.287C23
C1C2C2C2×C4 — C42.287C23

Subgroups: 220 in 174 conjugacy classes, 140 normal (18 characteristic)
C1, C2, C2 [×2], C2 [×2], C4 [×2], C4 [×2], C4 [×12], C22, C22 [×2], C22 [×2], C8 [×4], C8 [×6], C2×C4 [×2], C2×C4 [×16], C2×C4 [×2], Q8 [×4], C23, C42 [×2], C42 [×6], C22⋊C4 [×4], C4⋊C4 [×16], C2×C8 [×12], C2×C8 [×2], M4(2) [×4], C22×C4, C22×C4 [×2], C2×Q8 [×4], C4×C8 [×4], C8⋊C4 [×8], C4⋊C8 [×12], C2×C42, C42⋊C2 [×2], C4×Q8 [×4], C22⋊Q8 [×4], C42.C2 [×2], C4⋊Q8 [×2], C22×C8 [×2], C2×M4(2) [×2], C2×C8⋊C4, C82M4(2) [×2], C4⋊M4(2), C42.6C22 [×2], C84Q8 [×8], C23.37C23, C42.287C23

Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], Q8 [×4], C23 [×15], C22×C4 [×14], C2×Q8 [×6], C4○D4 [×2], C24, C4×Q8 [×4], C23×C4, C22×Q8, C2×C4○D4, C2×C4×Q8, Q8○M4(2) [×2], C42.287C23

Generators and relations
 G = < a,b,c,d,e | a4=b4=1, c2=b, d2=a2b, e2=a2, ab=ba, cac-1=a-1b2, dad-1=ab2, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece-1=a2c, ede-1=b2d >

Smallest permutation representation
On 64 points
Generators in S64
(1 63 55 47)(2 44 56 60)(3 57 49 41)(4 46 50 62)(5 59 51 43)(6 48 52 64)(7 61 53 45)(8 42 54 58)(9 30 38 22)(10 19 39 27)(11 32 40 24)(12 21 33 29)(13 26 34 18)(14 23 35 31)(15 28 36 20)(16 17 37 25)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)(33 35 37 39)(34 36 38 40)(41 43 45 47)(42 44 46 48)(49 51 53 55)(50 52 54 56)(57 59 61 63)(58 60 62 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 25 49 19 5 29 53 23)(2 26 50 20 6 30 54 24)(3 27 51 21 7 31 55 17)(4 28 52 22 8 32 56 18)(9 46 40 64 13 42 36 60)(10 47 33 57 14 43 37 61)(11 48 34 58 15 44 38 62)(12 41 35 59 16 45 39 63)
(1 63 55 47)(2 48 56 64)(3 57 49 41)(4 42 50 58)(5 59 51 43)(6 44 52 60)(7 61 53 45)(8 46 54 62)(9 26 38 18)(10 19 39 27)(11 28 40 20)(12 21 33 29)(13 30 34 22)(14 23 35 31)(15 32 36 24)(16 17 37 25)

G:=sub<Sym(64)| (1,63,55,47)(2,44,56,60)(3,57,49,41)(4,46,50,62)(5,59,51,43)(6,48,52,64)(7,61,53,45)(8,42,54,58)(9,30,38,22)(10,19,39,27)(11,32,40,24)(12,21,33,29)(13,26,34,18)(14,23,35,31)(15,28,36,20)(16,17,37,25), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,25,49,19,5,29,53,23)(2,26,50,20,6,30,54,24)(3,27,51,21,7,31,55,17)(4,28,52,22,8,32,56,18)(9,46,40,64,13,42,36,60)(10,47,33,57,14,43,37,61)(11,48,34,58,15,44,38,62)(12,41,35,59,16,45,39,63), (1,63,55,47)(2,48,56,64)(3,57,49,41)(4,42,50,58)(5,59,51,43)(6,44,52,60)(7,61,53,45)(8,46,54,62)(9,26,38,18)(10,19,39,27)(11,28,40,20)(12,21,33,29)(13,30,34,22)(14,23,35,31)(15,32,36,24)(16,17,37,25)>;

G:=Group( (1,63,55,47)(2,44,56,60)(3,57,49,41)(4,46,50,62)(5,59,51,43)(6,48,52,64)(7,61,53,45)(8,42,54,58)(9,30,38,22)(10,19,39,27)(11,32,40,24)(12,21,33,29)(13,26,34,18)(14,23,35,31)(15,28,36,20)(16,17,37,25), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,25,49,19,5,29,53,23)(2,26,50,20,6,30,54,24)(3,27,51,21,7,31,55,17)(4,28,52,22,8,32,56,18)(9,46,40,64,13,42,36,60)(10,47,33,57,14,43,37,61)(11,48,34,58,15,44,38,62)(12,41,35,59,16,45,39,63), (1,63,55,47)(2,48,56,64)(3,57,49,41)(4,42,50,58)(5,59,51,43)(6,44,52,60)(7,61,53,45)(8,46,54,62)(9,26,38,18)(10,19,39,27)(11,28,40,20)(12,21,33,29)(13,30,34,22)(14,23,35,31)(15,32,36,24)(16,17,37,25) );

G=PermutationGroup([(1,63,55,47),(2,44,56,60),(3,57,49,41),(4,46,50,62),(5,59,51,43),(6,48,52,64),(7,61,53,45),(8,42,54,58),(9,30,38,22),(10,19,39,27),(11,32,40,24),(12,21,33,29),(13,26,34,18),(14,23,35,31),(15,28,36,20),(16,17,37,25)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32),(33,35,37,39),(34,36,38,40),(41,43,45,47),(42,44,46,48),(49,51,53,55),(50,52,54,56),(57,59,61,63),(58,60,62,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,25,49,19,5,29,53,23),(2,26,50,20,6,30,54,24),(3,27,51,21,7,31,55,17),(4,28,52,22,8,32,56,18),(9,46,40,64,13,42,36,60),(10,47,33,57,14,43,37,61),(11,48,34,58,15,44,38,62),(12,41,35,59,16,45,39,63)], [(1,63,55,47),(2,48,56,64),(3,57,49,41),(4,42,50,58),(5,59,51,43),(6,44,52,60),(7,61,53,45),(8,46,54,62),(9,26,38,18),(10,19,39,27),(11,28,40,20),(12,21,33,29),(13,30,34,22),(14,23,35,31),(15,32,36,24),(16,17,37,25)])

Matrix representation G ⊆ GL6(𝔽17)

14150000
530000
00111500
009600
000062
0000811
,
1600000
0160000
0013000
0001300
0000130
0000013
,
1470000
130000
000010
000001
0013000
0001300
,
100000
010000
000100
0013000
000001
0000130
,
320000
12140000
00111500
009600
00001115
000096

G:=sub<GL(6,GF(17))| [14,5,0,0,0,0,15,3,0,0,0,0,0,0,11,9,0,0,0,0,15,6,0,0,0,0,0,0,6,8,0,0,0,0,2,11],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,13,0,0,0,0,0,0,13,0,0,0,0,0,0,13,0,0,0,0,0,0,13],[14,1,0,0,0,0,7,3,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,13,0,0,1,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,13,0,0,0,0,1,0,0,0,0,0,0,0,0,13,0,0,0,0,1,0],[3,12,0,0,0,0,2,14,0,0,0,0,0,0,11,9,0,0,0,0,15,6,0,0,0,0,0,0,11,9,0,0,0,0,15,6] >;

44 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G···4R8A···8H8I···8T
order1222224444444···48···88···8
size1111221111224···42···24···4

44 irreducible representations

dim1111111111224
type+++++++-
imageC1C2C2C2C2C2C2C4C4C4Q8C4○D4Q8○M4(2)
kernelC42.287C23C2×C8⋊C4C82M4(2)C4⋊M4(2)C42.6C22C84Q8C23.37C23C22⋊Q8C42.C2C4⋊Q8C2×C8C2×C4C2
# reps1121281844444

In GAP, Magma, Sage, TeX

C_4^2._{287}C_2^3
% in TeX

G:=Group("C4^2.287C2^3");
// GroupNames label

G:=SmallGroup(128,1693);
// by ID

G=gap.SmallGroup(128,1693);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,120,723,268,2019,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=1,c^2=b,d^2=a^2*b,e^2=a^2,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d^-1=a*b^2,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=a^2*c,e*d*e^-1=b^2*d>;
// generators/relations

׿
×
𝔽